The Senescence group at the LMS is led by Jesus Gil. The team studies how cellular senescence is regulated and what are its physiological roles. Their eventual aim is finding novel ways to target senescence in cancer and ageing.
Ogrodnik M, Acosta JC, Adams PD, d’Adda di Fagagna F, Baker DJ, Bishop C, Chandra T, Collado M, Gil J, Gorgoulis V, Gruber F, Hara E, Jansen-Dürr P, Jurk D, Khosla S, Kirkland JL, Krizhanovsky V, Minamino T, Niedernhofer L, Passos JF, Ring NAR, Redl H, Robbins P, Rodier F, Scharffetter-Kochanek K, Sedivy J, Sikora E, von Zglinicki T, Yun MH, Grillari J, Demaria M. (2024). MICSE: Minimal Information on Cellular Senescence Experimentation in vivo. Cell, 187:4150-4175.
McHugh D, Sun B, Gutierrez-Muñoz C, Hernández-González F, Mellone M, Guiho R, Duran I, Pombo J, Pietrocola F, Birch J, Kallemeijn WW, Khadayate S, Dharmalingam G, Vernia S, Tate EW, Martínez-Barbera JP, Withers DJ, Thomas GJ, Serrano M, Gil J. (2023). COPI vesicle formation and N-myristoylation are targetable vulnerabilities of senescent cells.
Nat Cell Biol. 25(12):1804-1820. doi: 10.1038/s41556-023-01287-6. Epub 2023 Nov 27.
Guerrero A, Innes AJ, Roux PF, Buisman SC, Jung J, Ortet L, Moiseeva V, Wagner V, Robinson L, Ausema A, Potapova A, Perdiguero E, Weersing E, Aarts M, Martin N, Wuestefeld T, Muñoz-Cánoves P, de Haan G, Bischof O, Gil J. (2022) 3-deazaadenosine (3DA) alleviates senescence to promote cellular fitness and cell therapy efficiency in mice.
Nat Aging. Sep;2:851-866. doi: 10.1038/s43587-022-00279-9. Epub 2022 Sep 13.
Calimport SRG, Bentley BL, Stewart CE, Pawelec G, Scuteri A, Vinciguerra M, Slack C, Chen D, Harries LW, Marchant G, Fleming GA, Conboy M, Antebi A, Small GW, Gil J, Lakatta EG, Richardson A, Rosen C, Nikolich K, Wyss-Coray T, Steinman L, Montine T, de Magalhães JP, Campisi J, Church G. (2019). To help aging populations, classify organismal senescence. Science 366, 576-578, ISSN: 0036-8075
Guerrero A, Herranz N, Sun B, Cardiac glycosides are broad-spectrum senolytics, Nature Metabolism 1, 1074–1088 doi:10.1038/s42255-019-0122-z
Gorgoulis V, Adams PD, Alimonti A, Bennett DC, Bischof O, Bishop C, Campisi J, Collado M, Evangelou K, Ferbeyre G, Gil J, Hara E, Krizhanovsky V, Jurk D, Maier AB, Narita M, Niedernhofer L, Passos JF, Robbins PD, Schmitt CA, Sedivy J, Vougas K, von Zglinicki T, Zhou D, Serrano M, Demaria M. (2019). Cellular senescence: defining a path forward. Cell 179, 813-827, ISSN: 0092-8674
Georgilis A, Klotz S, Hanley CJ, Weirich B, Morancho B, Herranz N, Leote AC, Carroll T, Dharmalingam G, Wee KB, Mellone M, Guccione E, Arribas J, Barbosa-Morais NL, Heikenwalder M, Thomas GJ, Zender L and Gil J. (2018). PTBP1-mediated alternative splicing regulates the inflammatory secretome and the pro-tumorigenic effects of senescent cells. Cancer Cell 34, 85-102.
Herranz N, Gallage S, Mellone M, Wuestefeld T, Klotz S, Hanley CJ, Raguz S, Acosta JC, Innes AJ, Banito A, Georgilis A, Montoya A, Wolter K, Dharmalingam G, Faull P, Carroll T, Martínez-Barbera JP, Cutillas P, Reisinger F, Heikenwalder M, Miller RA, Withers D, Zender L, Thomas GJ, Gil J. (2015). mTOR regulates MAPKAPK2 translation to control the senescence-associated secretory phenotype. Nature Cell Biology 17(9), 1205-1217.
Acosta JC, Banito A, Wuestefeld W, Georgilis A, Janich P, Morton JP, Athineos D, Kang TW, Lasitschka F, Mindaugas A, Pascual G, Morris KJ, Khan S, Jin H, Dharmalingam G, Snijders AP, Carroll T, Capper D, Pritchard C, Inman G, Longerich T, Sansom OJ, Benitah SA, Zender L, Gil J. (2013). A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nature Cell Biology 15(8), 978-990.
Acosta JC, O’Loghlen A, Banito A, Guijarro MV, Augert A, Raguz S, Fumagalli M, Da Costa M, Brown C, Popov N, Takatsu Y, Melamed J, d’Adda di Fagagna F, Bernard D, Hernando E, Gil J. (2008). Chemokine signaling via the CXCR2 receptor reinforces senescence. Cell 133(6), 1006–1018.